Reinforcement Learning and Nonparametric Detection of Game-Theoretic Equilibrium Play in Social Networks
نویسندگان
چکیده
This paper studies two important signal processing aspects of equilibrium behavior in non-cooperative games arising in social networks, namely, reinforcement learning and detection of equilibrium play. The first part of the paper presents a reinforcement learning (adaptive filtering) algorithm that facilitates learning an equilibrium by resorting to diffusion cooperation strategies in a social network. Agents form homophilic social groups, within which they exchange past experiences over an undirected graph. It is shown that, if all agents follow the proposed algorithm, their global behavior is attracted to the correlated equilibria set of the game. The second part of the paper provides a test to detect if the actions of agents are consistent with play from the equilibrium of a concave potential game. The theory of revealed preference from microeconomics is used to construct a non-parametric decision test and statistical test which only require the probe and associated actions of agents. A stochastic gradient algorithm is given to optimize the probe in real time to minimize the Type-II error probabilities of the detection test subject to specified Type-I error probability. We provide a real-world example using the energy market, and a numerical example to detect malicious agents in an online social network.
منابع مشابه
An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملGame-Theoretic Approach for Pricing Decisions in Dual-Channel Supply Chain
In the current study, a dual-channel supply chain is considered containing one manufacturer and two retailers. It is assumed that the manufacturer and retailers have the same decision powers. A game-theoretic approach is developed to analyze pricing decisions under the centralized and decentralized scenarios. First, the Nash model is established to obtain the equilibrium decisions in the decent...
متن کاملStronger CDA strategies through empirical game-theoretic analysis and reinforcement learning
We present a general methodology to automate the search for equilibrium strategies in games derived from computational experimentation. Our approach interleaves empirical game-theoretic analysis with reinforcement learning. We apply this methodology to the classic Continuous Double Auction game, conducting the most comprehensive CDA strategic study published to date. Empirical game analysis con...
متن کاملA JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS
Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1501.01209 شماره
صفحات -
تاریخ انتشار 2014